Mehrebenenanalyse

Eine Schlüsselannahme in vielen linearen Modellen (z.B. Regression) ist die Unabhängigkeit / Unkorreliertheit der Residuen. Diese Annahme kann aus verschiedenen Gründen verletzt sein. Sei es, dass die Untersuchungseinheiten / Versuchspersonen eine genestete (verschachtelte) Struktur aufweisen (z.B. Schülerinnen und Schüler genestet in Schulklassen). Sei es, dass Messwiederholungen vorliegen, dass also die gleichen Variablen mehrfach erhoben werden (Messzeitpunkte genestet in Versuchspersonen / Untersuchungseinheiten). Für derartige Datenstrukturen gibt es eine Reihe von miteinander verwandten Verfahren, wobei die Begriffe teilweise synonym verwendet werden, teilweise gewisse Bedeutungsunterschiede aufweisen können.

Wenn man die Mehrebenenstruktur (z.B. Schülerinnen und Schüler als Ebene 1, Schulklassen als Ebene 2, etc.) betonen möchte, spricht man häufig von Mehrebenenmodellen (Multilevel Models). Ein anderer Begriff, der ebenfalls die Struktur der Daten betont, ist der der hierarchischen linearen Modelle (Hierarchical Linear Models, HLM).

Demgegenüber stellt der Begriff der Linear Mixed Effects Models stärker auf die Mischung von zwei Arten von Effekten ab, die man in derartigen Modellen analysiert, Fixed Effects und Random Effects. Dieser Begriff wird vor allem auch verwendet, wenn experimentelle Daten, z.B. mit Messwiederholung, analysiert werden. Ähnlich verwendet man manchmal auch den Begriff der Random Effects Models.

Bei aller Unterschiedlichkeit der Namen für diese Klasse von Verfahren sind die zu Grunde liegenden Analysetechniken vergleichbar. Im Folgenden verwende ich daher den Begriff der Mehrebenenanalyse, wobei damit die anderen o.g. Namen mit gemeint sind.

Tutorials

Zur Mehrebenenanalyse biete ich Ihnen kostenlose Tutorials für verschiedene Fragestellungen an:

Beratung

Wenn Sie eine Mehrebenenanalyse durchführen, können sich Fragen zu vielen Einzelschritten der Auswertung ergeben, z.B.:

  • Modellspezifikation - Was ist das passende Modell für die Fragestellung?
  • Prüfung der Voraussetzungen
  • Robuste Mehrebenenanalyse
  • Zentrierung von Prädiktoren
  • Ermittlung von p-Werten für Random Effects

All das sind mögliche Themen, die wir im Rahmen einer Beratung besprechen können.

Aktuell berate ich für derartige Modelle nur für einfachere Modelle (bis hin zur Masterarbeit; keine Beratung für Dissertationen). Außerdem biete ich momentan keine Beratung in Modellen mit Messwiederholung / Längsschnittanalysen / Paneldaten an.

Bei welcher Software zur Mehrebenenanalyse kann ich Sie ggf. unterstützen?

Aktuell biete ich Beratung zur Mehrebenenanalyse mit den folgenden Programmen:

  • R (vor allem lme4 Package)
  • jamovi

Wie sind die Konditionen und wie können Sie einen Termin vereinbaren?

Hier finden Sie alle weiteren Informationen, wenn Sie mich als Berater beauftragen möchten:
Beratung Regorz Statistik

Nachhilfe Pfadanalyse

Wenn Sie zum Thema Pfadanalyse Nachhilfe zur Prüfungsvorbereitung benötigen, finden Sie hier mein Angebot:
Nachhilfe Regorz Statistik